Transmission Path Calculation for Transatlantic VHF Test VO1/EI

Dr.-Ing. Volker Mühlhaus, DL5DAW (dl5daw@darc.de) Reference: Einführung in die Radartechnik, Prof. B. Schiek, Univ. Bochum, Germany

Geometry setup

Distance from source to first reflection [m]	R1 := 900km
First reflection area size [m ²]	$\operatorname{Ar1} := 10^4 \cdot \mathbf{m} \cdot \mathbf{m}$
Distance first to second reflection [m]	$R2 := 900 \cdot km$
First reflection area size [m^2]	$Ar2 := 10^4 \text{ m m}$
Distance from second reflection to target [m]	R3 := 900 km
Transmitter & receiver setup	
Frequency of operation [Hz]	$f := 144 \cdot MHz$
Output power at transmitter	Pt := 600W
TX & RX antenna gain over isotropic	Gdb := 15
Calculation Wavelength [m] $\lambda := \frac{3 \cdot 10^8 \cdot \frac{m}{s}}{f}$	$\lambda = 2.083 \mathrm{m}$
Antenna power gain $G := 10^{10}$	G = 31.623
Antenna capture area [m^2] $A := \lambda^2 \cdot \frac{G}{4 \cdot \pi}$	$A = 10.922 \text{ m}^2$
Reflection object radar cross section $\sigma_1 := \sigma_1$	$\frac{4 \cdot \pi \cdot \operatorname{Ar1}^2}{\lambda^2} \qquad \sigma 1 = 2.895 \times 10^8 \mathrm{m}^2$
Radar cross section is not the physical cross section! $\sigma 2 := \sigma$	$\frac{4 \cdot \pi \cdot \operatorname{Ar1}^2}{\lambda^2} \qquad \sigma 2 = 2.895 \times 10^8 \mathrm{m}^2$
Received power $Pe := \frac{Pt \cdot G}{4 \cdot \pi \cdot R1^2} \cdot \sigma 1 \cdot \frac{1}{4 \cdot \pi \cdot R2^2} \cdot \sigma$	$52 \cdot \frac{1}{4 \cdot \pi R3^2} \cdot A$
$Pdbm := 10 \cdot \log \left(\frac{Pe}{10^{-3}W} \right)$	$ begin{pmatrix} Pdbm = -137.832 \end{pmatrix}$
$U := \sqrt{Pe \cdot 50 \cdot ohm}$ $U =$	$2.87 \times 10^{-8} \text{ V}$

Thermal noise power in 100Hz bandwidth

Pth := -154

SN := Pdbm - Pth

Signal to noise ration in 100Hz BW

SN = 16.168